A light field‐based method to adjust rounded leaf end MLC position for split shape dose calculation correction in a radiation therapy treatment planning system
نویسندگان
چکیده
We present an analytical and experimental study of split shape dose calculation correction by adjusting the position of the round leaf end position in an intensity-modulated radiation therapy treatment planning system. The precise light field edge position (Xtang.p ) was derived from 50% of the central axis dose created by nominal light field using geometry and mathematical methods. Leaf position (Xmlc.p), defined in the treatment planning system for monitor unit calculation, could be derived from Xtang.p. Offset (correction) could be obtained by the position corresponding to 50% of the central axis dose minus the Xmlc.p position. For SSD from 90 cm to 120 cm at 6 MV and 10 MV, the 50% dose position was located outside of Xmlc,p in the MLC leaf position range of +8 cm to -8 cm, where the offset correction positively increased, whereas the offset correction negatively increased when the MLC leaf position was in the range of -12 cm to -8 cm and +20 cm to +8 cm when the 50% position was located inside Xmlc,p. The monitor unit calculation could provide underdosage or overdosage of 7.5% per mm without offset correction. Calibration could be performed at a certain SSD to fit all SSD offset corrections. With careful measurement and an accurate offset correction, it is possible to achieve the dose calculation with 0.5% error for the adjusted MLC leaf edge location in the treatment planning system.
منابع مشابه
A Light-Field-Based Method to Adjust On-Axis Rounded Leaf End MLC Position to Predict Off-Axis MLC Penumbra Region Dosimetric Performance in a Radiation Therapy Planning System
PURPOSE An analytical and experimental study of split shape dose calculation correction by adjusting the position of the on-axis round leaf end position is presented. We use on-axis corrected results to predict off-axis penumbra region dosimetric performance in an intensity-modulated radiation therapy treatment planning system. MATERIALS AND METHODS The precise light-field edge position (X(ta...
متن کاملRounded leaf end effect of multileaf collimator on penumbra width and radiation field offset: an analytical and numerical study
BACKGROUND Penumbra characteristics play a significant role in dose delivery accuracy for radiation therapy. For treatment planning, penumbra width and radiation field offset strongly influence target dose conformity and organ at risk sparing. METHODS In this study, we present an analytical and numerical approach for evaluation of the rounded leaf end effect on penumbra characteristics. Based...
متن کاملThe Quality Control of Intensity Modulated Radiation Therapy (IMRT) for ONCOR Siemens Linear Accelerators Using Film Dosimetry
Introduction Intensity Modulated Radiation Therapy (IMRT) has made a significant progress in radiation therapy centers in recent years. In this method, each radiation beam is divided into many subfields that create a field with a modulated intensity. Considering the complexity of this method, the quality control for IMRT is a topic of interest for researchers. This article is about the various ...
متن کاملOptimizing the MLC model parameters for IMRT in the RayStation treatment planning system
Unlike other commercial treatment planning systems (TPS) which model the rounded leaf end differently (such as the MLC dosimetric leaf gap (DLG) or rounded leaf-tip radius), the RayStation TPS (RaySearch Laboratories, Stockholm, Sweden) models transmission through the rounded leaf end of the MLC with a step function, in which the radiation transmission through the leaf end is the square root of...
متن کاملPretreatment quality control of single isocenter half- beam treatment planning technique using an amorphous silicon electronic portal-imaging device (EPID)
Introduction: Electronic portal imaging devices (EPIDs) are fundamentally used for instantaneous verification of the patient set‐up, block shape, and leaf positions during radiation therapy. In radiotherapy, situations arise in which an inclined PTV must be treated mutually with adjacent nodal regions. This methodology is most widely used for matching tangential/lateral breas...
متن کامل